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Analytical solutions for rotational di� usion in the mean ® eld

potential: application to the theory of dielectric relaxation

in nematic liquid crystals

by YURI P. KALMYKOV

Institute of Radio Engineering and Electronics of the Russian Academy of Sciences,
Vvedenskii Square 1, Fryazino, Moscow Region, 141120, Russian Federation

and WILLIAM T. COFFEY*

Department of Electronic and Electrical Engineering, Trinity College, Dublin 2,
Ireland

(Received 17 October 1997; in ® nal form 31 January 1998; accepted 5 February 1998 )

A theory of dielectric relaxation in nematics is developed for a molecular dipole moment
directed at an arbitrary angle to the molecular long axis. Both exact and simple approximate
analytical formulae for the longitudinal and transverse components of the complex dielectric
permittivity tensor are obtained for the non-inertial rotational Brownian motion of a molecule
in the mean ® eld potential of Maier and Saupe. It appears that both longitudinal and
transverse relaxation processes are e� ectively described by two Debye type mechanisms with
corresponding relaxation times and dielectric strengths expressed in terms of the order
parameter. The generalization of the theory for an arbitrary axially symmetric mean ® eld
potential is given.

1. Introduction evaluations of the dielectric parameters of nematics
[1, 2]. The usual approach to the problem is to solveDielectric relaxation processes in liquid crystalline

materials are determined by structural properties, inter- the Fokker± Planck equation for the distribution function
W of the orientations of a unit vector u, ® xed in themolecular interactions and reorientations of the molecules.

The complex dielectric permittivity of a nematic liquid molecule [1, 3]:
crystal has very di� erent dispersion regions and qualitative
behaviour in the parallel (E dn) and perpendicular (E)n)

2tD
q
qt

W = =
2
V W +

1

kT
div(W grad U ) (1 )

alignment (E is the measuring a.c. ® eld and n is the
director of the nematic). The origin of these dispersion

where =
2
V is the Laplace operator in angular variables,regions is in general due to hindered reorientations of

k is the Boltzmann constant, T is the temperature,the molecules about the molecular long and short axes
tD= ( 2D)) Õ

1 is the orientational relaxation time inin strong orientational forces of the nematic phase [1, 2].
the isotropic phase, and D) is the rotational di� usionDielectric relaxation in nematic liquid crystals is usually
coe� cient with respect to the axis which is perpendicularinterpreted in the context of a model of non-inertial
to the axis of symmetry of the molecule. Equation (1)rotational Brownian motion of a particle in a mean ® eld
can be formally solved by the method of the separationpotential ® eld U (see for example [1± 11] ), although
of variables (e.g. [7] ), which reduces the solution tothe mean ® eld approximation has a restricted area of
a Sturm± Liouville problem. An alternative method isapplicability as it ignores local order e� ects. In spite of
to expand the distribution function W in sphericalthis drawback the model nevertheless is easily visualized
harmonics (for example [11] ). The problem is thenand moreover allows us to carry out quantitative
reduced to the solution of in® nite-dimensional systems of
linear di� erential-recurrence equations for the statistical
moments (averaged spherical harmonics) which may be*Author for correspondence.
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330 Y. P. Kalmykov and W. T. Co� ey

written down in the matrix form: times to the order parameter S and are valid for any
strength of the nematic potential. They are presented
in the form suitable for comparison with dielectricd

dt
X ( t) =AX ( t) . (2 ) relaxation measurements and can easily be tested with

experimentally available data. We remark, that from a
mathematical point of view the calculation of the dielectricVarious methods of solution of equations (1) and (2)
response of polar molecules in a mean ® eld potentialhave been discussed, for example, in [4± 8, 12, 13].
closely resembles the problem of magnetic relaxation ofThe basic model for the calculation of the components
single domain ferromagnetic particles [14± 16].of the complex dielectric permittivity tensor and dielectric

relaxation times of nematics is the rotational di� usion
model of symmetric top molecules in the self-consistent 2. Exact solution for the Maier ± Saupe model
mean ® eld potential of Maier and Saupe [3, 4]: The complex dielectric permittivity tensor e ij(v) =

e ¾ij(v) Õ ie ²
ij (v) of a nematic is diagonal and has only two

independent components, one perpendicular [e)(v) =U

kT
= Õ s cos2

q (3 )
eXX (v) =eYY(v) ] and the other parallel [e

d
(v) =eZZ (v) ]

to the director vector n in the laboratory coordinate
system XY Z , where the Z axis coincides with thewhere q is the angle between the axis of symmetry
director.of the molecule and the Z axis of the laboratory

If we ignore intermolecular correlations, the com-coordinate system. The calculation of the complex
ponents of the complex dielectric permittivity tensor aredielectric susceptibility and associated relaxation times
determined by the relations [9, 17]:for a potential of the form of equation (3) has already

been considered (for instance [3 ± 7] ) and also a clear
physical understanding of dielectric relaxation in nematics

e c (v) Õ e c 2
=

4pm
2
N0 R c (v)

kThas been achieved [4, 5]. Nevertheless, for the most part,
numerical and approximate solutions only have been
obtained. These solutions are in general either so com- Ö C C c ( 0 ) Õ iv P 2

0
C c ( t) exp (Õ ivt) dtD ,

plicated or are of such restricted range of applicability
that their use in practice is di� cult. In recent studies (c= d, )) (4 )
[11], on the other hand, we have obtained both exact
and rather simple approximate solutions when the dipole where
moment of the molecule l is directed along the axis of

C
d
( t) = 7 uZ ( 0 )uZ ( t) 8 0 (5 )symmetry of the molecule . Here the general case, where

the vector l is directed at an arbitrary angle b to the
C)( t) = 7 uX ( 0 )uX ( t ) 8 0 (6 )

molecular axis of symmetry, is considered that allows us
substantially to extend the scope of the applicability of are the components of the dipole autocorrelation
the results of ref. [11]. In order to accomplish this we function, uX , uZ are the projections of the unit vector u
use the basic concepts of a recently developed method along l onto the axes X and Z , N0 is the concentration
[12] for the evaluation of the parameters governing of molecules, e

2c are the high frequency limits of the
the linear response of systems with dynamics described components of the complex dielectric permittivity tensor,
by the Fokker± Planck equation. This method is based and R c (v) is the frequency dependent factor of the
on an exact solution of the recurrence relations for the internal ® eld. For an ellipsoidal cavity in an anisotropic
spectra of the statistical moments using either ordinary dielectric [17] for example
or matrix continued fractions and does o� er, to our
mind, real advantages over direct matrix algebra methods

R c (v) =
e c (v)

e c (v) Õ s c (v) [e c (v) Õ e
2c ]

(7)(e.g. [5]), because the calculations can be carried out
even using a pocket calculator. Moreover, the approxi-
mate solutions are derived by utilizing the concepts of where s c (v) are the components of the depolarization
the integral relaxation (correlation) time and the e� ective tensor (equations for s c (v) are given, for example, in
eigenvalue, so allowing us to generalize the theory to [9, 17] ).
an arbitrary axially symmetric mean ® eld potential. We shall consider an ensemble of rigid dipolar
The simple approximate formulae so obtained relate the molecules, where the vector l is oriented at an angle b

longitudinal and transverse components of the complex to the direction of the long axis of the molecule. The
orientation of a moving coordinate system xyz, ® xed indielectric susceptibility and corresponding relaxation
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331Dielectric relaxation in nematics

the molecule, with respect to the laboratory system XY Z Thus, the conditional probability density W (V, t |V0 ) is
is de® ned by the Euler angles V ={Q, q, y}, where Q, q the Green’s function of the Fokker ± Planck equation (1).
and y are the azimuthal and polar angles, and the angle Noting the representation of the Dirac d-function
describing rotation of a molecule around its axis of [18]
symmetry, respectively. The components of the tensor
dipole autocorrelation function from equations (5) and

d(V Õ V0 ) = �
2

j=0
�

j

n=Õ j
�

j

m=Õ j
( 2j+ 1 ) D

j
nm (V0 ) D

j
nm (V)(6 ) may be represented as [5]:

(13)C
d
( t ) =cos2

b f
1
00 ( t) + sin2

b f
1
01 ( t ) (8 )

C)( t) =cos2
b f

1
10 ( t) + sin2

b f
1
11 ( t) (9 ) we have the initial values for c

j
nm ( 0 ) =D

j
nm (V0 ) .

Substituting equations (3) and (11) into (1) we have
where

f
1
nm ( t) = 7 D

1
nm ( 0 ) D

1*nm ( t ) 8 0
1

D)
�

jnm
( 2j + 1 ) D

j
nm (V)

q
qt

c
j
n,m ( t)

= P D
1
nm (V0 )W 0 (V0 ) dV0 P D

1*nm (V)W (V, t |V0 ) dV
= �

jnm
(2j + 1 )c

j
n,m ( t)G =

2
V D

j
nm (V ) + 2s

(10)

Ö C cos q sin q
q
qq

D
j
nm (V )+( 3 cos2

q Õ 1 )D
j
nm (V )D H.are the equilibrium autocorrelation functions, W 0 (V0 ) =

C exp (Õ U/kT ) and W (V, t |V0 ) are, respectively, the
(14)equilibrium distribution function and conditional prob-

ability density to have a molecule with orientation V

On using ([18], pp. 79, 82)at an instant t provided that at t =0 that molecule
had orientation V0 ; the asterisk denotes the com-
plex conjugate, dV ; sin q dq dQ dy, and D

J
MM¾ (V) = cos qD

j
nm (V )

exp( iMQ)d
J
MM¾ (q) exp (iM ¾ y) are Wigner’s D -functions.

The d
J
MM¾ (q ) are given, for example, in ref. [18] and can =

[( j
2 Õ n

2
) ( j

2 Õ m
2
) ]1/2

j( 2j+ 1 )
D

j Õ
1

nm (V ) +
nm

j ( j + 1 )
D

j
nm (V )

be expressed in terms of the Legendre polynomials
Pn (cos q ), e.g.

+
{[ ( j+ 1 )

2 Õ n
2][ ( j+ 1 )

2 Õ m
2]}

1/2

( j+ 1 ) ( 2j+ 1 )
D

j+1
nm (V )

d
j
00 (q) =P j (cos q ) ,

(15)
d

j

Ô 11 (q ) =
1 Ô cos q

j ( j + 1 ) G dPj (cos q)

d cos q
sin q

q
qq

D
j
nm (V )

7 [1 7 cos q]
d

2
Pj (cos q )

d cos q
2 H,

= Õ
( j+ 1 ) [ ( j

2 Õ n
2
) ( j

2 Õ m
2
) ]1/2

j ( 2j+ 1 )
D

j Õ
1

nm (V )

d
j

Ô 10 (q ) = 7
sin q

[ j( j+ 1 ) ]1/2

dPj (cos q)

d cos q
,

Õ
nm

j ( j + 1 )
D

j
nm (V )

d
j
0 Ô 1 (q ) =Ô

sin q

[ j( j+ 1 ) ]1/2

dPj (cos q )

d cos q
.

+
j{[ ( j+ 1 )

2 Õ n
2] [ ( j+ 1 )

2 Õ m
2] }

1/2

( j + 1 ) ( 2j + 1 )
D

j+1
nm (V )

We seek a solution of equation (1) in the form
(16)

W (V, t |V0 ) = �
2

j=0
�

j

n=Õ j
�

j

m=Õ j
( 2j+ 1 )c

j
nm ( t) D

j
nm (V)

and [5, 19]

(11)
=

2
V D

j
nm (V ) = Õ { j ( j+ 1 ) + m

2[ (D
d
/D)) Õ 1 ]}D

j
nm (V )

with the initial condition
(D

d
is the rotational di� usion coe� cient about the axis

of symmetry of the molecule), we have the set ofW (V, 0 |V0 ) =d(V Õ V0 ) . (12)
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332 Y. P. Kalmykov and W. T. Co� ey

equations for c
j
nm ( t) : and the ® ve-term recurrence relation

tD
d

dt
c

j
nm ( t) +G j( j+ 1 )

2
+ m

2
D

tD
d

dt
f

j
11( t)+C j ( j+1 )

2
+D Õ

s[ j( j+1 ) Õ 3 ]2

j ( j+1 ) ( 2j Õ 1 ) ( 2j+3 ) D f
j
11 ( t)

Õ s
[ j ( j + 1 ) Õ 3m

2][ j ( j + 1 ) Õ 3n
2]

j ( j+ 1 ) ( 2j Õ 1 ) ( 2j+ 3 ) Hc
j
nm t)

=
s

2j+ 1C ( j Õ 2 ) ( j+ 1 )
2

2j Õ 1
f

j Õ
2

11 ( t)+
j+ 3

j
f

j Õ
1

11 ( t)

=
s

( 2j+ 1 )G ( j+ 1 ) {[ j
2 Õ n

2] [ ( j Õ 1 )
2 Õ n

2]
Ö [ j

2 Õ m
2][ ( j Õ 1 )

2 Õ m
2]}

1/2

j ( j Õ 1 ) ( 2j Õ 1 )
c

j Õ
2

nm ( t) Õ
j Õ 2

j+ 1
f

j+1
11 ( t) Õ

j
2
( j + 3 )

2j+ 3
f

j+2
11 ( t)D (22)

with j =1, 2, ¼ and f Õ
1

nm ( t ) , f
0
nm ( t) =0.

+
mn ( j + 3 ) {[ j

2 Õ n
2][ j

2 Õ m
2]}

1/2

j( j Õ 1 ) ( j+ 1 )
c

j Õ
1

nm ( t ) The Laplace transform of these systems may be
reduced to in® nite systems of inhomogeneous linear
algebraic equations, the exact solution of which is deter-Õ

mn ( j Õ 2 ){[( j+1 )
2 Õ n

2][( j+1 )
2 Õ m

2]}
1/2

j( j+ 1 ) ( j+ 2 )
c

j+1
nm ( t)

mined using a method developed in [12]. This method
constitutes a further development of Risken’s continued
fraction method [13]. It allows us to solve the inhomo-
geneous recurrent relations, which are necessary forÕ

j{[ ( j + 2 )
2 Õ n

2] [ ( j + 1 )
2 Õ n

2]
Ö [ ( j+ 2 )

2 Õ m
2][ ( j+ 1 )

2 Õ m
2]}

1/2

( j + 2 ) ( j + 1 ) ( 2j+ 3 )
c

j+2
nm ( t ) H the calculation of dielectric permittivity spectra and

relaxation times.
We remark that equations (19) and (20) are(17)

mathematically identical to those describing dielectric
where relaxation when b=0 [11]. Such equations have been

comprehensively described in ref. [11] so we merely
D =

1

2C D
d

D)
Õ 1D . quote the main results here. Using the method of

ref. [12], we have a solution of equation (19) for the
It is now possible to derive from equations (10), (11) Laplace transform fÄ

1
00 (s)=Ÿ 20 exp (Õ st) f

1
00 ( t ) dt in terms

and (17) systems of di� erential-recurrence relations for of scalar continued fractions, namely ( for details see
the equilibrium correlation functions ref. [11] ):

fÄ
1
00 (s) =

tD

stD+ 1 Õ 2s[1 Õ S
3
00 (s) ]/5

f
j
00 ( t) = 7 D

1
00 ( 0 ) D

j
00 ( t) 8 0 ,

f
j
01 ( t) =[ j ( j + 1 )/2]1/2 7 D

1
01 ( 0 ) D

j*01 ( t ) 8 0

f
j
11 ( t) = 7 D

1
11 ( 0 ) D

j*11 ( t) 8 0 ,

f
j
10 ( t) =[ j ( j + 1 )/2]1/2 7 D

1
10 ( 0 ) D

j*10 ( t ) 8 0 .

(18)

These equations are the three 3-term recurrence relations: Ö C f
1
00 (0 )+ �

2

n=1
(Õ 1 )

n

(4n+3 )CAn+
1

2 B f
2n+1
00 ( 0 )

2p
1/2

C(n+2 )
2tD

j( j+ 1 )

d

dt
f

j
00 ( t) +C 1 Õ

2s

( 2j Õ 1 ) ( 2j+ 3 ) D f
j
00 ( t)

=
2s

2j+ 1C j Õ 1

2j Õ 1
f

j Õ
2

00 ( t) Õ
j + 2

2j+ 3
f

j+2
00 ( t )D (19)

Ö a
n

k=1
S

2k+1
00 (s) D (23)

2tD

j( j+ 1 )

d

dt
f

j
10 ( t ) +C 1 Õ

2s[1 Õ 3/j( j+ 1 ) ]

( 2j Õ 1 ) (2j + 3 ) D f
j
10 ( t )

where S
n
00 (s) is the continued fraction de® ned as=

2s

2j+ 1C j+ 1

2j Õ 1
f

j Õ
2

10 ( t) Õ
j

2j + 3
f

j+2
10 ( t )D (20)

S
n
00 (s)=

2s(n Õ 1 )

4n
2 Õ 1 C 2tD s

n (n + 1 )
+ 1 Õ

2s

( 2n Õ 1 ) ( 2n + 3 )tD
d

dt
f

j
01 ( t) +C j ( j + 1 )

2
+ D Õ

s[ j( j+ 1 ) Õ 3 ]

( 2j Õ 1 ) ( 2j+ 3 ) D f
j
01 ( t)

=
sj ( j + 1 )

2j+ 1 C j + 1

2j Õ 1
f

j Õ
2

01 ( t) Õ
j

2j + 3
f

j+2
01 ( t)D (21) +

2s(n + 2 )

( 2n + 1 ) ( 2n + 3 )
S

n+2
00 (s)D Õ

1

. (24)
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333Dielectric relaxation in nematics

The initial conditions f
2n+1
00 ( 0 ) are given by where

f
2n+1
00 (0 )

S
n
10 (s)=

sn (n+1 )
2

4n
2 Õ 1 C tD s+

n (n + 1 )

2
Õ

s[n (n + 1 ) Õ 3 ]

( 2n Õ 1 ) ( 2n+3 )
=

1

4n + 3
S

2n
00 ( 0 )S

2n Õ
2

00 ( 0 ) ¼ S
2
00 ( 0 )

+
sn

2
(n + 1 )

( 2n + 1 ) ( 2n + 3 )
S

n+2
10 (s)D Õ

1

(28)Ö [2 (n + 1 )S
2n+2
00 (0 ) + 2n + 1 ]

=
2 (n + 1 ) 7 P2n+2 (cos q ) 8 0 + (2n + 1 ) 7 P2n (cos q) 8 0

4n + 3 S
n
01 (s)=S

n
10 A s+

D

tDB (29)

f
2n+1
10 ( 0 ) = f

2n+1
01 ( 0 )

=

s
n
C A n +

3

2 B M A n +
3

2
, 2n +

5

2
, sB

2C A 2n+
5

2 B M A 1

2
,

3

2
, sB

(25)
=

(n + 1 ) ( 2n + 1 )

4n+ 3
S

2n
00 ( 0 )S

2n Õ
2

00 ( 0 ) ¼ S
2
00 ( 0 )

Ö [1 Õ S
2n+2
00 ( 0 ) ]

where 7 8 0 designates the equilibrium ensemble average,
the Pn (x ) are the Legendre polynomials [20], C(z) is the =

(n + 1 ) ( 2n + 1 )

4n+ 3gamma function [20], and M (a, b, z) is the con¯ uent
hypergeometric function de® ned as [20] Ö [ 7 P2n (cos q ) 8 0 Õ 7 P2n+2 (cos q ) 8 0]

M (a, b, z) =
C(b)

C (a)
�
2

n=0

C(a + n)

C (b + n)

z
n

n!
.

=

s
n
(n + 1 )C A n +

3

2 B M A n +
1

2
, 2n +

5

2
, sB

2C A 2n +
5

2 B M A 1

2
,

3

2
, sB

.

In the derivation of equation (25) we note that [11]

7 P2n (cos q ) 8 0=S
2n
00 ( 0 )S

2n Õ
2

00 ( 0 ) ¼ S
2
00 ( 0 ) (30)

We remark that all the con¯ uent hypergeometric func-
=

s
n
C A n +

1

2 B M A n +
1

2
, 2n +

3

2
, sB

2C A 2n +
3

2 B M A 1

2
,

3

2
, sB

tions appearing in equations (25), (26) and (30) may be
expressed in terms of the more familiar error function
of imaginary argument, viz. erfi(x)=2/p

1/2 Ÿ
x
0 exp (t 2

) dt.
In particular ( [21], pp. 580, 581)(26)

and
M A 1

2
,

3

2
, zB=

1

2 A p

2B
1/2

erfi (z1/2 )

M A 3

2
,

7

2
, zB=

15

8z
2C 3 exp(z) Õ

3 + 2z

2 A p

z B
1/2

erfi (z1/2
)D .

S
2n
00 ( 0 ) =

2 ( 2n Õ 1 )sM A n +
1

2
, 2n +

3

2
, sB

( 16n
2 Õ 1 )M A n Õ

1

2
, 2n Õ

1

2
, sB

.

Equations for the other M functions occurring in
equation (30) may be obtained from table 7.11.2 ofOn applying the method of ref. [12] to the solution
ref. [22] and the recurrence relations for the con¯ uentof systems of equations (20) and (21), we have fÄ

1
10 (s)

hypergeometric function.and fÄ
1
01 (s) in terms of scalar continued fractions:

In order to obtain fÄ
1
11 (s) from equation (22) we can

also apply the general matrix method of solving ® ve-
term di� erential-recurrence relations (22) developed in
refs [12, 23]. Equation (22) may be transformed to thefÄ

1

{10
01}

(s) =
tD

4sp
1/2 �

2

n=0

(Õ 1)n (4n + 3 )C A n +
1

2 B
(2n + 1 ) (n + 1 )C(n + 2 ) matrix equation

tD
d

dt
Cn ( t ) =Q Õn Cn Õ

1 ( t ) + QnCn ( t) + Q+n Cn+1 ( t )Ö f
2n+1

{10
01}

( 0 ) a
n

k=0
S

2k+1

{10
01}

(s) D (27)

(31)
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334 Y. P. Kalmykov and W. T. Co� ey

with C0 ( t )=0 if we represent that equation as follows Here we have used the equality [18]

tD
d

dt A f
2j Õ

1
11 ( t )

f
2j
11( t) B D

1
11 (V ) D

j

Õ
1
Õ

1 (V ) =
1

2C j+1

2j+1
P j Õ

1 (cos q )

+
j

2j+1
P j+1 (cos q )+Pj (cos q )D .

= A
4sj

2
( 2j Õ 3 )

( 4j Õ 1 ) ( 4j Õ 3 )

2s ( j+ 1 )

( 2j Õ 1 ) ( 4j Õ 1 )

0
2s ( j Õ 1 ) ( 2j+ 1 )

2

( 4j Õ 1 ) ( 4j+ 1 ) B A f
2j Õ

3
11 ( t)

f
2j Õ

2
11 ( t )B

On using equations (23), (27) and (33), we may
calculate from (8) and (9) the spectra of the dipolar
correlation functions:

CÄ
d
( iv) =cos2

b fÄ
1
00 ( iv) + sin2

b fÄ
1
01 ( iv) (34)

CÄ )( iv) =cos2
b fÄ

1
10 ( iv) + sin2

b fÄ
1
11 ( iv) (35)+ A

s[2j ( 2j Õ 1 ) Õ 3]2

2j( 2j Õ 1 ) ( 4j+1 ) ( 4j Õ 3 )

Õ j ( 2j Õ 1 ) Õ D

Õ
s ( 2j Õ 3 )

2j ( 4j Õ 1 )

s ( 2j+3 )

2j ( 4j+ 1 )

s[2j ( 2j+ 1 ) Õ 3 ]2

2j ( 2j+ 1 ) ( 4j Õ 1 ) ( 4j+ 3 )

Õ j ( 2j+1 ) Õ D B and so the components of the complex dielectric
permittivity tensor from equation (4 ).

Although the exact solutions (23), (27) and (33) in
terms of scalar and matrix continued fractions may
appear unusual to a general reader of L iquid Crystals,Ö A f

2j Õ
1

11 ( t )

f
2j
11( t ) B they are very convenient for computations (various

algorithms for calculating ordinary and matrix con-
tinued fractions are discussed in ref. [13], Chap. 9).

+ A Õ
2s ( j+1 ) ( 2j Õ 1 )

2

( 4j Õ 1 ) ( 4j+1 )
0

Õ
2s ( j Õ 1 )

( 2j+1) ( 4j+1)
Õ

4sj
2
( 2j+3 )

( 4j+1 ) ( 4j+3 ) B A f
2j+1

11 ( t )

f
2j+2

11 ( t )B . Here all the continued fractions and series involved
converge very rapidly, and thus 10 downward iterations
in calculating these continued fractions and 8± 10 terms
in the series (23), (27) and (33) are enough to arrive at(32)
not less than six signi® cant digits in the majority of
cases. Equations (23), (27) and (33) are applicableThe exact solution of equation (32) in terms of matrix
for any values of the parameters s, b and D

d
/D)continued fractions is [12]

(at b=0 the results obtained agree with those of [11]).
Furthermore, they allow us to determine the accuracyA fÄ

1
11 (s)

fÄ
2
11 (s) B of the various approximate solutions (for example

[6, 7]). In ref. [11] we also obtained simple approximate=tD[tD sI Õ Q1 Õ Q+1 S
2
11 (s)] Õ

1

expressions for the correlation functions at b=0 using
the concepts of the correlation time and e� ective eigen-

Ö GC1 (0 ) + �
2

n=2
a
n

k=2
Q+k Õ

1S
k
11 (s) (Q Õk ) Õ

1
Cn ( 0 ) H value. It is also possible to deduce similar approxi-

mate formulae for b Þ 0 and to test their accuracy by
(33) comparing them with the exact solutions given above.

We recall that one can calculate the integral relaxationwhere I is the unit matrix, Qn , Q Ôn are the matrices
times tnm , de® ned as the areas under the curves of thede® ned by equations (31) and (32), and the matrix
normalized correlation functions, from the equationcontinued fraction S

n
11 (s) is given by

[12]:
S

n
11 (s)=[tD sI Õ Qn Õ Q+n S

n+1
11 (s)] Õ

1
Q Õn .

tnm =
1

f
1
nm ( 0 ) P2

0
f

1
nm ( t) dt =

fÄ
1
nm ( 0 )

f
1
nm ( 0 )

. (36)All the matrices in equation (33) are of size 2 Ö 2. The
initial value vectors Cn (0 ) are given by

The relaxation times tnm may equivalently be de® ned inCn (0 )
the context of the Sturm± Liouville equation as

= A f
2nÕ

1
11 ( 0 )

f
2n
11( 0 ) B

tnm =
�

k
C

nm
k /l

nm
k

�
k

C
nm
k

(37)

=
1

2 A 1

4n Õ 1
[2n 7 P2nÕ

2(cos q) 8 0+ ( 2n Õ 1 ) 7 P2n (cos q ) 8 0]

7 P2n(cos q ) 8 0 B . where l
nm
k and C

nm
k are the eigenvalues and their

corresponding weight coe� cients (amplitudes), as the
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335Dielectric relaxation in nematics

correlation functions f
1
nm ( t) are given by t00 valid for all values of s were deduced accordingly in

refs [11, 16, 25] and [26, 27] as:
f

1
nm ( t ) =�

k
C

nm
k exp(Õ l

nm
k t) .

Yet another time constant characterizing the relaxation
process is the inverse of the e� ective eigenvalue
(lef

nm ) Õ
1=t

ef
nm de® ned as t00

tD
=

3

2
�
2

n=0

(Õ s
2
)
nAn+

3

4 B C
2An+

3

2B
Ö M An+

3

2
, 2n+

5

2
, sBM An+1, 2n+

5

2
, sB

(n + 1 ) An +
1

2B C
2A2n+

5

2 B M A 3

2
,

5

2
, sBt

ef
nm = Õ

f
1
nm ( 0 )

fÇ
1
nm ( 0 )

=
�

k
C

nm
k

�
k

l
nm
k C

nm
k

(38)

=
3 exp (s)

s
2
M A 3

2
,

5

2
, sB P

1

0

cosh[s (z
2 Õ 1 )] Õ 1

1 Õ z
2 dz (41)

(a review of the e� ective eigenvalue method is given in
[24] ). The e� ective time also includes contributions
from all the eigenvalues. Moreover it gives precise
information on the initial relaxation of the polarization t

ap
00

tD
#

exp(s) Õ 1

s C 2s (s/p)
1/2

1 +s
+ 2 Õ sD Õ

1

. (42)
in the time domain. The behaviour of tnm and t

ef
nm

is sometimes similar. Indeed, if a single eigenvalue
The main contribution to the relaxation of f

1
00 ( t ) is duedominates the relaxation tnm $t

ef
nm . However if di� erent

to the overbarrier relaxation mode, which has the small-time scales are involved, as happens in activation
est non-vanishing eigenvalue. However, equation (39)processes, the behaviour of tnm and t

ef
nm may be very

ignores high frequency relaxation inside the wellsdi� erent [11].
[11, 28], which is detected as a very weak peak in theIt is usually impossible to evaluate analytically
dielectric loss spectrum e ² (v) when b =0 and s &1 [11].both tnm and t

ef
nm from the above formulae using the

Here a better approximation for f
1
00 ( t ) is [29]Sturm± Liouville equation as a knowledge of the law of

formation of the eigenvalues and their corresponding f
1
00 ( t) # exp(Õ t/t00 ){ 7 cos q 8 2

well

weights (amplitudes) is required. The approach we shall
+ [ 7 cos2

q 8 0 Õ 7 cos q 8 2
well] exp (Õ t/tW) } (43)use below, just as in [11, 24], does not attempt to

calculate tnm and t
ef
nm by explicitly calculating the where tW# tD /2s is the time characterizing relaxation

eigenvalue spectrum as required by equations (37) and inside the wells [28],
(38); rather it gives tnm and t

ef
nm in terms of the exact

integral representation for tnm and in terms of the order 7 cos q 8 well=
exp (s) Õ 1

2sM A 1

2
,

3

2
, sBparameter S for t

ef
nm .

3. Comparison of exact and approximate solutions and 7 ( )́ 8 well means an average in a single potential well
The behaviour of the correlation function f

1
00 ( t) = (for example in the domain 0 < q < p/2).

7 D
1
00 ( 0 ) D

1
00 ( t) 8 0 can be approximated by a single Now as shown in ref. [11] the behaviour of the (trans-

exponential as has been shown in ref. [11]: verse) correlation function f
1
10 ( t) = 7 D

1
10 ( 0 ) D

1*10 ( t) 8 0

may be accurately described by a single exponential by
means of the e� ective eigenvalue method:f

1
00 ( t) # f

1
00 ( 0 ) exp(Õ t/t00 ) =

1 + 2S

3
exp (Õ t/t00 )

f
1
10 ( t) # f

1
10 ( 0 ) exp(Õ t/t10 ) =

( 1 Õ S )

3
exp(Õ t/t10 )(39)

where (44)

where
S =

3

2
7 cos2

q 8 0 Õ
1

2
=

3 exp (s)

4sM A 1

2
,

3

2
, sB

Õ
3

4s
Õ

1

2
t10 #t

ef
10= Õ

f
1
10 ( 0 )

fÇ
1
10 ( 0 )

=tDC 1 +
s

5
+

2s f
3
01 ( 0 )

15 f
1
01 ( 0 ) D Õ

1

(40)
=2tD

1 Õ S

2 + S
(45)

is the order parameter, and t00 is the relaxation time
given by equation (36) at n, m =0. Both exact and where t

ef
10 is the e� ective relaxation time, which is de® ned

from equation (20) at t =0.approximate formulae for the integral relaxation time
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336 Y. P. Kalmykov and W. T. Co� ey

In like manner, relaxation of both correlation t
ef
11 is similar. This is not so for f

1
00 ( t) where the

e� ective relaxation time t
ef
00 = Õ f

1
00 ( 0 )/ fÇ

1
00 ( 0 ) divergesfunctions f

1
01 ( t) and f

1
11 ( t) , which mainly characterize

the rotation of the molecule about the molecular long exponentially from the correlation time t00 [11] on
account of the activation process.axis, can be described by the single exponentials

On using equations (4), (8 ), (9 ), (39), (44), (46) and
(47), we can now derive simple approximate expressionsf

1
01 ( t) #

( 1 Õ S )

3
exp (Õ t/t01 ) (46)

for the normalized complex susceptibility spectra

f
1
11 ( t) #

( 2 + S )

6
exp (Õ t/t11 ) (47) x c (v) =

kT [e c (v) Õ e c 2
]

4pm
2
N0R c (v)

where =C c ( 0 ) Õ ivCÄ c ( iv) , (c= d, )) (50)

which may be written ast01 #t
ef
01= Õ

f
1
01 ( 0 )

fÇ
1
01 ( 0 )

=tDC 1 +
s

5
+ D +

2s f
3
01 ( 0 )

15 f
1
01 ( 0 ) D Õ

1

x
d
(v) #

1

3C (1 + 2S) cos2
b

1 + ivt
ap
00

+
( 1 Õ S ) sin2

b

1 + ivt
ef
01 D (51)

=tD
1 Õ S

1 + (1 Õ S )D + S/2
(48)

x)(v) #
1

3C ( 1 Õ S ) cos2
b

1 + ivt
ef
10

+
(1 + S/2 ) sin2

b

1 + ivt
ef
11 D (52)

t11 #t
ef
11= Õ

f
1
11 ( 0 )

fÇ
1
11 ( 0 )

=tDC 1 Õ
s

10
+

1

2 A D
d

D)
Õ 1B with t

ap
00 , t

ef
01 , t

ef
10 and t

ef
11 given by equations (42), (45),

(48) and (49), respectively. The results of the calculation
+

4s f
3
11 ( 0 )

15 f
1
11 (0 )

Õ
s f

2
11 ( 0 )

6 f
1
11 ( 0 ) D Õ

1

(49) of the dielectric loss spectra x ²
c (v) from the exact and

approximate formulae are shown in ® gures 2 ± 5. For
s&1 the longitudinal dielectric loss spectrum x ²

d
(v) has=tD

2 + S

2 + (2 + S )D Õ S/2 two loss peaks. The low frequency peak of x ²
d

(v) is
due to the overbarrier relaxation mode of the parallelwhere t

ef
01 and t

ef
11 are the e� ective relaxation times

(to the molecular long axis) component of the dipoleyielded by equations (21) and (22), respectively at t =0.
moment. On the other hand both high frequencyThe results of the calculation of the relaxation times
longitudinal relaxation modes inside the wells and also

tnm and t
ef
nm are shown in ® gure 1, where the exact and

the rotation of the perpendicular component of theapproximate relaxation times tnm and t
ef
nm as functions

dipole moment around the molecular long axis manifestof s clearly are in complete agreement. The e� ective
themselves in the high frequency band. In contrast, ineigenvalue method is successful here in the evaluation
the transverse dielectric loss spectrum x ²

)(v) the twoof the decay of f
1
10 ( t) , f

1
01 ( t) and f

1
11 ( t) , because the

dispersion regions are not widely separated as they areoverbarrier relaxation (activation) mode is not involved
in these relaxation processes, so that the behaviour of
the correlation times t01 , t01 and t11 and t

ef
01 , t

ef
01 and

Figure 2. Spectrum x ²
d (v) calculated from the exact equations

Figure 1. log(tnm /tD ) as a function of s , calculated from the (23), ( 27), (34) and (50) at s= 10 and Dd/D)
=1

(solid lines). Curves 1, 2 and 3 correspond to b= p/10,exact formulae (23 ), (27 ), ( 33) and (36) for Dd/D)
=1

(solid lines). ( E E E E )Ð the calculation from the approximate p/4 and 2p/5, respectively. ( E E E E )Ð the calculation from
equation (54) [at b =p/10 equation (43) was used].equations (42), (45 ), ( 48) and (49).
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337Dielectric relaxation in nematics

Figure 5. Spectrum x ²
)(v), calculated from the exact equationsFigure 3. Spectrum x ²

)(v), calculated from the exact equations
(27), (33), ( 35) and (50) at b= p/4 and Dd/D)

=1 (solid(27), (33 ), ( 35) and (50 ) at s =10 and Dd/D)=1
lines). Curves 1, 2 and 3 correspond to s =1, 5 and 10,(solid lines). Curves 1, 2 and 3 correspond to b= p/10,
respectively. ( E E E E )Ð the calculation from equation (52).p/4 and 2p/5, respectively. ( E E E E )Ð the calculation from

equation (52).

accuracy with the spectra calculated from the exact
formulae (23), (27), (33), (34), (35) and (50). This means
that for b Þ 0 both longitudinal and transverse dielectric
relaxations can be approximately described by two
exponential decays for all values of s and b.

Just as for b=0 we may formally introduce retardation
factors for each e� ective mode (the retardation
factor gnm is de® ned as the ratio of relaxation times of
the corresponding mode in the nematic and isotropic
liquid phases). According to equations (42) and (48) the
longitudinal relaxation retardation factors for the low
and high frequency modes are given by

g00 =
exp (s) Õ 1

s C 2s(s/p)1/2

1+s
+ 2 Õ sD Õ

1

(53)Figure 4. Spectrum x ²
d (v), calculated from the exact equations

(23), ( 27), (34) and (50) at b =p/4 and Dd/D)
=1 (solid

lines). Curves 1, 2 and 3 correspond to s =1, 5 and 10, and
respectively. ( E E E E )Ð the calculation from equation (51).

g01=
(1 Õ S ) (1 +D)

1 + ( 1 Õ S )D + S/2
(54)

both located in the high frequency region. Nevertheless,
if they can be distinguished (e.g. curve 1 in ® gure 3) one

respectively. The retardation factors for the low andfrequency dispersion band is associated with the rotation
high frequency modes for the transverse relaxation followof the perpendicular component of the dipole moment
from equations (45) and (49) and areabout the molecular long axis, while the transverse

relaxation modes contribute to another high frequency
g11=

(2 + S ) (1 +D)

2 + ( 2 + S )D Õ S/2
(55)peak (or shoulder) of the spectrum x ²

)(v) . Despite the
large number of high frequency modes involved in

andboth high frequency mechanisms, essentially two near
degenerate modes only (so that they have approximately

g10 =
1 Õ S

1 + S/2
. (56)the same characteristic frequencies) determine both

x ²
d

(v) and x ²
)(v) in the high frequency relaxation process

[7, 11]. Thus both low and high frequency processes In equation (53) the retardation factor g00 is given as
a function of the barrier height parameter s. One canare still e� ectively governed by a single relaxation mode.

As is apparent from ® gures 2± 5, the results predicted by also express g00 as a function of the order parameter S

by using the inverse function of equation (40) or bythe approximate equations (51) and (52) agree to good

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
4
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



338 Y. P. Kalmykov and W. T. Co� ey

using the extrapolating equation [30] where

s#
3S ( 5 Õ pS )

2 ( 1 Õ S
2
)

(57) (Rnm )jr=
1

2 ( 2j+1 )
�

k
Lk[ j ( j+1 ) Õ r (r+1 )+2k( 2k+1 ) ]

which provides a close approximation to s (S ) . The Ö C ( 2k, r, j; 0, n)C ( 2k, r, j; 0, m )

results of the calculation of s as a function of the order
C ( j1 , j2 , j3 ; m1 , m2 ) are the Clebsch± Gordan coe� cientsparameter S from equations (40) and (57) are shown
[33]. In like manner it is possible to derive sets ofin ® gure 6.
equations for the equilibrium correlation functionsThe exact and approximate solutions for the retardation
f

j
00 ( t ) , f

j
01 ( t) , f

j
10 ( t) , f

j
11 ( t) from equations (10) and (59)factors g00 and g10 for the Maier± Saupe potential given

which can be solved exactly with the help of matrixby equations (53) and (56) have been recently compared
continued fractions.with the experiment by Urban et al. [31, 32]. They

Furthermore, the approximate relations (51) and (52)veri® ed that the predictions of the theory are in qualitative
for the components of the normalized susceptibilitiesagreement with the experiment. However, there are
can also be applied with some modi® cations to adeviations from the experimental data [31, 32] in the
potential of the form of equation (58). Indeed, for thetemperature dependence of g00 and g10 predicted by
calculation of the relaxation time t00 it is possible to useequations (53) and (56). One would expect deviations
the exact integral representation [25, 34]:of this kind as the mean ® eld approximation provides

only a qualitative description of relaxation processes in
liquid crystals [4]. t00=

6tD

( 2S + 1 )Z P
1

Õ
1

exp(U (x )/kT )

1 Õ x
2

4. Generalization for an arbitrary axially symmetric

Ö C P x

Õ
1

x exp (Õ U (x )/kT )D2

dx (60)mean ® eld potential

The approach we have given for the evalution of the
dielectric parameters of nematics can be generalized to where x =cos q,
a mean ® eld potential of the form

U

kT
= Õ �

k
Lk P2k (cos q) . (58) S=

1

Z P
1

Õ
1

P2 (x ) exp (Õ U (x )/kT ) dx ,

Z= P
1

Õ
1

exp (Õ U (x )/kT ) dx .

(61)
Here instead of equation (17) we have [22]

1

D)

d

dt
c

j
nm ( t) +C j ( j + 1 ) + m

2A D
d

D)
Õ 1B D c

j
nm ( t ) Equations (45), (47), (48) for the e� ective relaxation

times t
ef
01 , t

ef
10 , t

ef
11 as functions of the order parameter

=�
r

(Rnm )jrc
r
nm ( t) (59) S also remain valid for a potential of the form of

equation (58) if we write them as follows

t10# t
ef
10 =2tD

1 Õ S

2 + S
(62)

t01# t
ef
01 =tD

1 Õ S

1 + (1 Õ S )D + S/2
(63)

t11# t
ef
11 =tD

2 + S

2 + (2 + S )D Õ S/2
(64)

where the order parameter S is given by equation (61).
Equation (62) is valid for any axially symmetric potential
as has been proved in ref. [10] and can be similarly
extended to t

ef
01 , t

ef
11 given by equations (63) and (64)

(see ref. [10] for details). Thus on using equations (51),
(52), (60) ± (64) we may calculate x

d
(v) and x)(v) forFigure 6. s as a function of S calculated from the exact

any potential of the form of (58) with S as a parameter.formula (40) (solid lines) and approximate equation (57)
( E E E E ). In particular, equations (60), (62)± (64) provide simple
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